
Dr. Shaukat Ali

Chapter # 11
Inermediate Code Generation

Dr. Shaukat Ali
Department of Computer Science

University of Peshawar



Compiler Overview



Introduction
 Intermediate code is the interface between front-end and back-

end in a compiler
 Ideally the details of source language are confined to the front-end 

and the details of target machines to the back-end

 A source code can directly be translated into its target machine 
code
 Why at all we need to translate the source code into an intermediate 

code which is then translated to its target code?



Why Intermediate Code? 
 If a compiler translates the source language to its target machine 

language without having the option for generating intermediate 
code, then for each new machine, a full native compiler is 
required

 Intermediate code eliminates the need of a new full compiler for 
every unique machine by keeping the analysis portion same for all every unique machine by keeping the analysis portion same for all 
the compilers
 The second part of compiler, synthesis, is changed according to the 

target machine
 It becomes easier to apply the source code modifications to 

improve code performance by applying code optimization 
techniques on the intermediate code



Why Intermediate Code?



Why Intermediate Code?
 While generating machine code directly from source code is 

possible, it entails problems
 With m languages and n target machines, we need to write m 

front ends, m x n optimizers, and m x n code generators
 The code optimizer which is one of the largest and very- The code optimizer which is one of the largest and very-

difficult-to-write components of a compiler, cannot be reused

 By converting source code to an intermediate code, a 
machine-independent code optimizer may be written
 This means just m front ends, n code generators and 1 

optimizer



Intermediate Representation
 Intermediate codes can be represented in a variety of ways and 

they have their own benefits
 High Level IR - High-level intermediate code representation is very 

close to the source language itself. They can be easily generated from 
the source code and we can easily apply code modifications to 
enhance performance. But for target machine optimization, it is less enhance performance. But for target machine optimization, it is less 
preferred

 Low Level IR -This one is close to the target machine, which makes 
it suitable for register and memory allocation, instruction set 
selection, etc. It is good for machine-dependent optimizations

 Intermediate code can be either language specific (e.g., Byte Code 
for Java) or language independent (three-address code).



Intermediate Code Generation
 Intermediate code must be easy to produce and easy to translate 

to machine code
 A sort of universal assembly language
 Should not contain any machine-specific parameters (registers, 

addresses, etc.)
 Intermediate code is represented in three-address space but the  Intermediate code is represented in three-address space but the 

type of intermediate code implementation is based on the 
compiler designer 
 Quadruples, triples, indirect triples are the classical forms used for 

machine-independent optimizations and machine code generation
 Static Single Assignment form (SSA) is a recent form and enables 

more effective optimizations



Three-Address Code

 Instructions are very simple : LHS is the target and the 
RHS has at most two sources and one operator

 RHS sources can be either variables or constants

 Examples: a = b + c, x = -y, if a > b Examples: a = b + c, x = -y, if a > b 
goto L1

 Three-address code is a generic form and can be 
implemented as quadruples, triples, indirect triples

 Example: The three-address code for (a+b*c)-
(d/(b*c)) is below



IR Code is Made From
 (a+b*c)- (d/(b*c))

 Intermediate Code 

t1 = b * c
t2 = a + t1
t3 = d / t1
t4 = t2 – t3



Example
 The intermediate code produced from DAG is more 

compact as compared AST
 a = b * (minus c) + b * (minus c)



Instructions in 3 – Address Space (1)
 Assignment instructions: a = b biop c, a = uop b, 
and a = b (copy)
 Where

 biop is any binary arithmetic, logical, or relational operator
 uop is any unary arithmetic (++, --, conversion) or logical operator (!)
 Conversion operators are useful for converting integers to floating point 

numbers, etc.numbers, etc.

 Jump instructions:
goto L (unconditional jump to L),
if t goto L (it t is true then jump to L),
if a relop b goto L (jump to L if a relop b is true),

 where
 L is the label of the next three-address instruction to be executed
 t is a boolean variable
 a and b are either variables or constants



Instructions in 3 – Address Space (2)
 Functions:
func begin <name> (beginning of the function),
func end (end of a function),
param p (place a value parameter p on stack),
refparam p (place a reference parameter p on stack),
call f, n (call a function f with n parameters),call f, n (call a function f with n parameters),
return (return from a function),
return a (return from a function with a value a)

 Indexed copy instructions:
a = b[i] (a is set to contents(baseaddress(b)+offset(i)),
where b is (usually) the base address of an array
a[i] = b (ith location of array a is set to b)



Instructions in 3 – Address Space (3)
 Pointer assignments:
a = &b (a is set to the address of b, i.e., a points to b)
*a = b (contents(contents(a)) is set to contents(b))
a = *b (a is set to contents(contents(b)))



Intermediate Code – Example 1



Intermediate Code – Example 2



Intermediate Code – Example 3



Intermediate Code – Example 4



Intermediate Code – Example 5



Data Structures for 3 – Address Code
 Quadruples

 Has four fields: op, arg1, arg2 and result
 Temporaries are used

 Triples
 Temporaries are not used and instead references to instructions  Temporaries are not used and instead references to instructions 

are made

 Indirect triples
 In addition to triples we use a list of pointers to triples



Quadruples
 In quadruples representation, there are four fields for each 

instruction: op, arg1, arg2, result
 Binary ops have the obvious representation
 Unary ops do not use arg2
 Operators like param does not use either arg2 result Operators like param does not use either arg2 result
 Jumps put the target label into the result

 The quadruples implement the three address space for the 
expression 

a = b * (-c) + b * (-c)



Quadruples



Triples
 Triples has only three fields for each instruction: op, arg1, 

arg2
 The result of an operation x op y is referred by its position
 Triples are equivlant to signature of nodes in DAG or syntax 

treetree
 Triples and DAG are equivalent representations only for 

expressions
 Ternary operation like X[i] = Y requires two entries in the 

triple structure; similarly for Y = X[i]



Triples



Indirect Triples
 These consist of a listing of pointers to triples; rather than a 

listing of the triples themselves
 The triples consists of three fields: op, arg1, arg2
 The arg1 or arg2 could be pointers



Example

 a = b * (minus c) + b * (minus c)

t1 = minus c
t2 = b * t1
t3 = minus c
t4 = b * t3
t5 = t2 + t4
a = t5

Three address code

minus
*

minus c t3
*
+
=

c t1
b t2t1

b t4t3
t2 t5t4
t5 a

arg1 resultarg2op

Quadruples

minus
*

minus c
*
+
=

c
b (0)

b (2)
(1) (3)
a

arg1 arg2op

Triples

(4)

0
1
2
3
4
5

minus
*

minus c
*
+
=

c
b (0)

b (2)
(1) (3)
a

arg1 arg2op

Indirect Triples

(4)

0
1
2
3
4
5

(0)
(1)

(2)
(3)
(4)
(5)

op
35
36
37
38
39
40



Example 2



 End of Chapter # 11


